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1 Introduction 

The Escape of High Explosive (HE) Products test  is a hydrodynamics only problem designed to 
test the codes’ ability to model the propagation of an unsupported, HE detonation wave. An 
ideal gas is used to model the HE. The detonation products expand to the right and interact a t  
the lef t  with a constant velocity piston. The choice of y = 3.0 and a careful selection of the 
piston velocity produces straight-line characteristics and makes possible the calculation of the 
exact solution. This problem tests the calculation of flow near a cavitation front where large 
gradients exist and is particularly difficult because both sets of characteristics become coincident 
a t  the front. 

Multidimensional Lagrange/ALE codes allow flexibility in constructing the computational 
mesh. For 2 and 3-D calculations, the ability of the code to maintain symmetry can also be 
tested. Eulerian codes may have difficulty implementing the constant velocity piston (perhaps an 
actual piston could be modeled). 

Many codes use a “programmed burn” model to represent the HE detonation wave. In this 
model, the velocity of the detonation front is precomputed. For these codes, only the self- 
consistent hydrodynamics occurring behind the detonation front is actually tested. 

Finally, practical problems are seldom 1-D. Modeling HE detonations in multiple dimensions 
introduces many more interactions and other possibilities than can be tested by this 1-D problem. 

2 Problem Description and Setup 

This is a one-dimensional planar, single-fluid problem using an ideal gas to model an unsupported 
high explosive (HE) detonation. The detonation products expand to the right into a vacuum and 
interact a t  the left with a constant-velocity piston. This problem tests the calculation of the flow 
near a cavitation front where large gradients exist. The calculation is particularly difficult because 
both sets of characteristics become coincident a t  the cavitation front. The choice of y = 3.0 
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produces straight-line characteristics which makes possible the calculation of the exact solution. 
A more complete description of the problem is found in Reference 1. 

The HE is Fickett and Rivard Comp B with an initial density p = 1.6 gm/cc. At t = 0 the 
HE will be detonated a t  the left  boundary with a detonation velocity DCJ = 8.5 x lo5 cm/sec 
and the HE product equation of state is p = ( 2 7 / 2 5 6 ) ( D c ~ ~ / p : ) p ~ .  The region will be driven 
about 30 cm to the right. Thus, Lagrangian codes should provide a “free” boundary condition; 
Eulerian codes need to provide about 50 cm of “vacuum” on the right. The left boundary of the 
problem is driven to the right a t  a constant velocity of 0.5 x lo5 cm/sec (Eulerian codes could, 
perhaps, use a very massive actual piston). 

Compute on a 30 “box” initially 10 cm long with reflecting boundaries in the transverse 
direction. Compute until time t = 70ps is  reached. Do four problems using an initially uniform 
grid of 100, 200, 400, and 800 zones. 

As output, in addition to the comparisons to quantities provided in Fickett and Rivard Table 
6.2 (Note: the time values must be multiplied by lo), supply values of the density, pressure 
and velocity vs. radius a t  the final time. For each quantity, produce plots superimposing the 
calculational result for all resolutions and the analytic solution. Include a time history plot of the 
total energy in the problem. Plot the log of the C1 norm of the difference between the calculated 
and analytical’ solution of density as a function of the inverse of the initial grid resolution. The 
C, norm is calculated as follows: 

nzones 
C, = ISirnulation(zi) - Analytic(zi)IAzi 

i= 1 

3 Analytic Solution 

The following is a brief review of the simplest practical model of high exl;,,xive (HE) detonations 
and a derivation of the solution to the equations of motion that comprises the test problem. The 
model is a one dimensional front moving with the Chapman-Jouguet (CJ) velocity with respect to 
the unburned HE. The burn chemistry is assumed to be completed instantaneously upon arrival 
of the detonation front. The equation of state of the reaction products is modeled as an ideal gas 
with constant heat capacity. A particular choice of the polytropic index allows a simple solution 
based on the method of characteristics. 

3.1 Derivation of the Analytic Model 

The HE detonation front is modeled as a planar discontinuity that is in steady state in i ts  own 
rest frame. In the rest frame of the unburned material the Rankine-Hugoniot jump conditions for 
mass and momentum conservation are 

~ o D  = p(D - U )  
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where po and po are the mass density and pressure of the HE prior to detonation, p and p are 
post-detonation values, 
burn front. Introducing 

u is the velocity of the detonation products and D is the velocity of the 
the specific volume 

1 
P 

v = -  

and eliminating u between (1) and (2) results in the so-called “Rayleigh line,” 

(3) 2 2  P -Po + Po D (v - VO) = 0 

The third jump condition, expressing conservation of energy across the detonation front, can be 
written as the ” Hugoniot curve,” 

where Eo and E are the specific HE energies in front of and behind the detonation wave. Given an 
equation of state for E and a detonation velocity D,  the post-detonation state ( p ,  v)  is obtained 
from the pre-detonation state as the intersection of the Hugoniot curve (4) with the Rayleigh line 

The test problem assumes a very simple chemical reaction model of the detonation process. 
No chemical kinetics equations are actually solved. Rather, a state dependent equilibrium model is 
used, according to which the chemical composition of the HE is determined by the instantaneous 
state of the system. We have 

(3)- 

where X is a parameter governing the degree of chemical reaction such that X = 0 corresponds 
to the initial, unburned state and X = 1 represents the detonation products. That is, 

E=E(p ,v ,X= 1) 

and 

in (4). Because of the approximation of zero thickness for the chemical reaction region the 
transition from X = 0 to X = 1 is instantaneous. 

The equation of state is taken to  be an ideal gas with constant heat capacity, 

where y is the constant polytropic index and q 2 0 is the constant heat of complete reaction. 
Substituting (6) into (4) yields the ideal gas Hugoniot curve, the locus of all possible final states 
for any detonation : 
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P 21 

Po 210 Po 210 
(- + p"(- - p2) = 1 - p 4  + 2p2--IL (7) 

where 

For positive q this curve does not run through the initial state. The implication of this is that, 
unlike an ordinary shock, there exists a range of values of D2 satisfying 

7Po D2 2 - 
Po 

for which there is no real solution to the simultaneous equations (3) and (7). Solving this system 
for the inverse of the compression gives 

where 

POD2 p+-- 
Po 

and 

7 2  2 r = (1- -) -2(y - 1)- P D 

The specific volume ratio (9) is complex and thus nonphysical for r < 0. This occurs for a 
given 4 when D2 is sufficiently small. The single root a t  r = 0 defines the Chapman-Jouguet 
point, characterized by the CJ detonation velocity 

the minimum detonation velocity possible in the model. Values of D2 greater than the CJ value 
yield positive values of r and from (9) two possible final states for the detonation products. The 
" +" root is the so-called "weak" solution, characterized by final state compression and pressure 
that are less than the CJ values. The "-I'  root yields the "strong" solution wherein the reaction 
products have a higher compression ratio and pressure than the CJ result. It is straightforward 
to show that the strong solution is unlikely to obtain. This is because the reaction product fluid 
velocity for this solution is subsonic in the shock rest frame, rendering the detonation front subject 
to dissipation by a following rarefaction. In fact, however, unsupported detonations appear quickly 
to reach a steady velocity and thereafter to be self-sustaining. Thus, from (3) and (9), 
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The isentropic sound speed behind the front follows as 

where 

The post-detonation fluid velocity is given by ( l ) ,  

~ ( 1 + $ )  

r+ 1 y + l  y + l  
u = D ( l - - ) = D  V 

WO 

so that 

The upper sign in (9) through (17) corresponds to the weak solution, the lower sign to the strong. 
It follows by inspection of (17) that because 

1 

R Z - l < O  

the weak solution satisfies 

u+c,  < D (18) 

indicating that the flow behind the shock is supersonic with respect to the shock. Similarly, 
because of the inequality 

1 1  y(1+ -)(R: - 1) + r+ > o 
P 

the strong solution is characterized by 

u + c s  > D (19) 

and the following flow is subsonic. The CJ state is that solution for ullich r = 0 and R = 1 so 
that, from (17), 

u + c , = D  (20) 

and the fluid moves away from the burn front a t  precisely the post-detonation sound speed. 
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Although there is some evidence to  support the conclusion that planar detonations can satisfy 
weak solutions, our test problem assumes that the final state is, in fact, the CJ state. Collecting 
the results for this case we have, in addition to expression (12) for the detonation velocity in 
terms of the heat of reaction, the final state values (9) and (13) for 'u and p ,  

V - Y Po - - -(I+-) 
vo Y+l POD2 

and 

1 p = -  + 1 (Po + POD2) 

The post-detonation sound and fluid velocities follow from (14) and (16); 

Po cs = - D(l+-) 
Y+l Po o2 

and 

D Po 
Y+l POD 

u = -(1- 7 7 )  

(23) 

The final simplification we will make in the test  problem is the constraint that the pressure of 
the reactants prior to  detonation be negligible by comparison with poD2. Setting po = 0 in (21) 
through (24) allows the simplification that the post-detonation state of the reaction products 
depends only on 7, po and the CJ velocity (12), 

D2 = 2(y2 - l ) q  (25) 

In our test problem the detonation products will expand forward into a vacuum. The approxima- 
tion of zero pressure in front of the detonation wave implies that the sound speed in this region 
is also zero, so the wave trajectory is not influenced by the HE-vacuum boundary prior to arrival 
a t  that boundary. 

3.2 The Solution by the Method of Characteristics 

In the characteristic analysis to  follow we will find it convenient to solve directly for the sound 
speed in various regions of the isentropic domain behind the detonation front. Throughout this 
domain the reaction products will satisfy a pressure density relationship of the form 

The constant IC i s  determined by the requirement that this relation hold for the CJ pressure (22) 
and density (21). Thus, 

1 
Po D2 k = ( - )7-  1-7 Y 

Y+l y + l  
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Using 

2 YP cs = - 
P 

and eliminating p gives an expression for the density in the post-detonation region in terms of 
the local sound speed, 

p y + 1 7 + 1 c s 2  - (-)7-1(-)7-1 

Po Y D 

This result in turn, together with (26), gives the pressure throughout the domain, 

(27) 

A characteristic analysis of the Euler equations in one spatial dimension yields three real eigen- 
values, which are the slopes of the characteristic curves in the (space , time) = (x,t) plane. The 
slope of the so- called Co characteristic is the fluid velocity itself, 

to = u 

The C* characteristics have slopes 

The fluid specific entropy is constant along each Co curve. In what follows, however, we will 
focus more on the C* families of curves. If q is an affine parameterization of one of these curves, 

we have the result that 

1 dp d u  -- f - = O  
Pcsdrl drl 

with the sign depending on which type of curve it is. From (27) and (28), 

2 dc, - 1 dP 
PCSd77 Y- 1 drl 
-- - -- 

Equation (32) can be therefore be integrated immediately, with the result that 

(33) 

where 77 and qo are any two points on the curve. Evidently, the value 
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y = 3  (35) 

of the adiabatic index gives, from (34), 

That is, the values of the slopes of the C* characteristics are constants; they are straight lines 
in the (x,t) plane. This is an important simplification that makes possible an analytic solution to 
the test problem and for this reason we stipulate that y = 3. 

The geometry of the test problem is a linear region of initially undetonated HE bounded on 
the right by vacuum and on the lef t  by a piston moving with specified constant velocity up. The 
detonation is initiated a t  time t = 0 a t  x = 0, the left  boundary, and moves to the right with 
specified velocity D. The piston is also started a t  t = 0. Fig. 1 summarizes the problem. Also 
shown in Fig. 1 are five trajectories, labeled "A" through "E," that divide the space-time solution 
domain into five regions, labeled " I" through "V." We will consider in turn the five curves and 
then the five regions. 

The Characteristic Solution 

time 

space 

Figure 1: Graphical representation of the characteristic solution 
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Shown on Fig. 1 are domains I - V within each of which the solution takes a simple analytic 
form. Also shown are the bounding curves A - E of the domains and two characteristic fans 
discussed in the text. 

Curve A is the detonation front trajectory, 

x = Dt (37) 

Let 2 be the initial length of the HE. Along curve A from the origin to event (x) t )  = (2)  = 2)  D 

the sound speed and fluid velocity take their CJ values. From (23) and (24), 

3 
4 C, = -D 

and 

1 
4 U =  -D (39) 

Since u + c, = D ,  the detonation front is i ts own C+ characteristic. The C- characteristic from 
any point on the curve has (inverse) slope 

1 
2 

u - C, = --D 

The characteristic net collapses a t  (2 )  i?) where the detonation front first encounters the influence 
of the vacuum boundary. From (2) the pressure p and so the sound speed drop discontinuously 
to zero with the result that all three characteristics emanating from events on A coincide with A: 

From this event outward the detonation front is causally disconnected from the rest of the 
evolution. The collapse of the net a t  the discontinuity yields a C- fan a t  (2)l) that provides 
knowledge of the HE-vacuum boundary to regions II, IV and V. 

Curve B is the piston trajectory, 

x = upt ( 4 4  

As a boundary, the piston provides the condition that the fluid velocity along i ts  trajectory is 

u = up (43) 

Curve C is the leading C+ piston characteristic; that is, the one emanating from the origin. The 
equation of this curve follows from applying (43) and (40) a t  the origin. Thus, solving for the 
sound speed, 

1 
2 

C, = up -I- -D (44) 
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so that 

1 
2 

u -k C ,  = 2uP + -D (45) 

It follows that curve C is described by 

(46) 
1 
2 

x = (2uP + -D)t  

Because curves A and C representing C+ characteristics from the origin are not identical, there is 
a C+ fan emanating from the origin that is bounded by these curves. This fan provides knowledge 
of the initial position of the piston to regions I and II. 

Curve D can be considered to be either the last C- characteristic from the detonation front 
before it arrives a t  the end of the detonation region or the first characteristic in the C- fan a t  
(5,t"). It separates regions I and 111 from II, IV and V. It must have the generic form 

x - 2 = (u - C , ) ( t  - i) (47) 

The value of the invariant u - c, is  the CJ value, given by (40), so that curve D is given by 

1 
2 

x = -(35 - Dt)  

Curve E is  the piston C+ characteristic from the event that is the intersection of the piston path 
with curve D. At an event (x, t )  = (xp, tP) = (uptp, tP)  on the piston path the C+ characteristic 
must have the form 

x - xp = (u + c,)(t - tP )  (49) 

Evaluating expressions (42) and (48) for curves B and D a t  (xp,tp) results in 

3 5  
- 2 up + i!jD 

t - -  

Following the analysis of curve C, the invariant u + c, is  given by (45). Substituting these results 
into (49) yields the equation for curve E: 

3 1 
2 2 

x = --5 + (2uP + -D)t 

Region I is bounded by curves C and D and by the segment of the detonation trajectory A 
between the origin and the vacuum. The C+ characteristics come from the fan generated by the 
discontinuity a t  the origin: 

x = (u + cs)t (52) 
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The C- characteristics come from the detonation curve A and provide the value of the Riemann 
invariant u - c, given by the CJ value (40). Solving these equations for the sound speed and the 
fluid velocity gives for the space-time dependencies of these quantities in region I the results 

and 

The density and pressure in region I follow from (27) and (28) with y = 3; 

16 c, 
P =  -Po- 9 D  

and 

3 16 
P = %POD2 (s) 

(55) 

Applied to region I these equations describe a rarefaction following the initial compression of the 
HE detonation products in which the density on a given time slice falls off linearly in space. 

In region II the C+ characteristics are the same as in region I, the fan generated a t  the origin. 
The C- characteristics are the fan generated a t  (Z , f ) .  The C+ curves are described by (52) 
while the C- equations come from (47). Solving these equations for the sound speed and the 
fluid velocity, 

c s = -  --- 2 YX t x-? t - t  

and 

u = - 1 (- x + -) x - z  
2 t t - t  

(57) 

The density and pressure follow from (55) and (56). Region II describes the density and pressure 
reductions in the HE burn product as it expands into the vacuum region and the influence of 
this expansion as knowledge of the vacuum boundary works its way back to the lef t  toward the 
leading C+ characteristic of the piston. 

The C+ characteristics in region 111 come from the piston. The C- characteristics are from 
curve A, the detonation front, and bring the information that the invariant u - cs satisfies (40) 
throughout 111. In particular, (40) must be satisfied on the piston itself, where we know also that 
the fluid velocity is the same as the piston velocity. Thus, (40) can be solved for the sound speed 
a t  the piston. The result is equation (44). To this in turn we add the piston fluid velocity and 
obtain 

1 
2 

+ c, = 2u, + -D (59) 
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for the C+ invariant throughout region 111. This is an extension to all of region Ill of the result 
(45) for the bounding curve C. Equations (40) and (59) can now be solved for cs and u with the 
results that throughout region 111 

1 
2 

cS = up -I- -D 

and 

u = u p  (61) 

From (55) and (56), the constancy of c, implies that the density and pressure are also constant 
in region Ill. As time elapses this constant region moves out ahead of the piston behind curve C 
until the rarefaction curve D is encountered, whereupon region Ill retreats back to the piston. 

The C+ characteristics in region IV are the same congruence as in region Ill; they come from 
the piston and bring the Riemann invariant (59). The C- curves are the fan from (5 , i ) ,  as in 
region II, with form (47). Thus, in region IV we have 

D 1 X - 5 3  
2 2 Dt-53 c, = up + - (- - -) 

and 

D 1 X - 2  
2 2 D t - x  u = up + - (- + -) 

Like region I, region IV is a rarefaction. 

The final stage of the evolution of the test problem is contained in region V. In V, the inwardly 
propagating rarefaction from the vacuum boundary has reached the piston and has reflected off it 
as curve E. The fluid velocity along the segment of curve B bounding region V is st i l l  the piston 
velocity itself, but the sound speed along this segment is no longer the region 111 constant value 
given by (60). As in regions II and IV the C- characteristics come from the fan generated a t  
(5,i)  and are described by (47). The intersection of one of these curves with the piston curve 
B a t  an event ( xp , tp ) ,  where the fluid velocity is up, yields the sound speed a t  the piston as a 
function of position along it: 

- + 
cs( tp)  = ( D  - up):- 

tp - t 

The C+ characteristics come from the piston and have the form (49). Because u+c, is constant 
along a C+ curve, we can substitute up + cs(tp) into (49) and solve for t,: 

-X - uPt + ( D  - U p ) t  
t ,  = t 

x - upt + (D - up)t 

Given an arbitrary event ( x , t )  in region V, (65) gives the time a t  which the C+ characteristic 
a t  that event intersects the piston world line B. Using (65) in (64), adding up and equating the 
result to u + cs gives an expression valid throughout the region: 
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2 + ( D  - 2up)tl 
u + c , =  t - i  

Finally, (66) and (47) are two equations to be solved for the sound speed and fluid velocity in 
region V: 

L 
c, = ( D  - up) -- t - t  

and 

- 
x - upt 

t-tl U =  

The density and pressure in region V are obtained by using the sound speed result (67) in (55) 
and (56). Both fields are constant on a given time slice. 

3.3 Discussion of the Analytic Solution 

Curves of density vs. x from the analytical solution for several thematic times during the evolution 
are shown on Fig. 2. The initial HE rod is 10 cm long with a density of 1.6g/cm3. The detonation 
velocity is 0.0085cm/shake and the piston velocity is 0.0005cm/shake. The detonation front 
breakout time is then 1176.47shakes and, from Section 3, the region Ill density behind the 
front is 1.5895g/cm3. Curves A and B, a t  325 and 750 shakes, show the detonation wave as it 
propagates through the medium. The initial compression comes from the CG jump conditions, 
giving a compression of 4/3 and taking the density to a value of 2.13333g/cm3. This is followed 
by the region I linear ramp down to the final region 111 density value. Referring to Fig. 1, curves 
A and B are time slices through regions 111 and 1. 

Curve C in Fig. 2 represents the density profile a t  a time of 1250shakes, just after the 
breakout of the detonation front into vacuum. The density a t  the leading edge of the solution 
drops to  zero. This density behavior is maintained for the duration of the subsequent evolution. 
The peak value of the compression drops to the region Il/region I (curve D in Fig. 1) intersection 
value. Again there follows the region I ramp to the constant region 111 density value. In Fig. 1 
curve C is a time slice through regions 111, I, and II. 

Curve D in Fig. 2, taken a t  t = 2000shakes, is an example of a time slice through region 
111, IV, and II as depicted in Fig. 1. There is no longer a compressed region relative to the initial 
density. Rather, a rarefaction is eating i ts  way back in toward the piston. 

Finally, curves E and F in Fig. 2 for t = 5000shakes and t = 7000shakes, are time slices 
through the final phase of the evolution, intersecting the Fig. 1 regions V, IV, and II. The reflected 
rarefaction in region V is characterized by constant density and pressure on a given time slice, 
with these values decreasing as a function of time. The piecewise linearity of the density profile 
is a striking feature of the analytic solution. 
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Figure 2: Density (p )  plots from the analytical solution for multiple times 
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4 Numerical Results 

The Escape of HE Products problem tests the code’s ability to model an unsupported high ex- 
plosive detonation in planar geometry. The choice of y = 3.0 for the HE material produces 
straight-line characteristics which makes possible the evaluation of the exact solution. The calcu- 
lation is particularly difficult near the cavitation front where both sets of characteristics become 
coincident and large gradients exist. 

Many codes, including CALE, use a “programmed burn” approximation to model the HE deto- 
nation. In this model, the position of the HE burn front is precalculated and therefore constrained 
to move a t  the prescribed velocity. The width of the HE burn front, like a hydrodynamic shock, 
is seldom resolved by the problem zoning. Additional approximations are required to  spread the 
burn front in both time and space in order to resolve the flow. For programmed burn models, 
the ability of the codes to match the analytic solution behind the detonation is measured. 

The Escape of HE Products test is a 1-D planar problem which can be calculated using 1, 2, 
or 3-D implementations. Mesh convergence studies for 3 times (750, 2000, and 7000) using an 
initially uniform mesh are utilized to more completely measure the code’s ability to model this 
HE detonation wave. 

4.1 CALE Results 

CALE is a 2-0 code. Cartesian geometry with 1 zone in the transverse direction is used to model 
the HE detonation. The energy deposition rate from the propagating HE burn blast wave is 
specified by the programmed burn HE model. After the burn wave has passed a given zone and 
all of the HE energy has been deposited, the resulting flow is self-consistently calculated. One 
HE burn model parameter, fhe, which modifies the width of the simulated detonation wave, had 
to be doubled to  obtain reasonable results for mesh resolutions greater than 100 zones. 

4.1.1 CALE Lagrangian Calculations 

Curves of density vs. x from the CALE code for resolutions of 25, 50, 100, 200, 400, 800, 
1600, 3200 and 6400 zones are shown on Fig. 3 taken a t  time t = 750. The sharp increase 
in density a t  about 6.3 cm is produced by the front of the HE detonation wave. Behind the 
detonation front, the density falls linearly. The interaction with the piston keeps the density of 
the burned HE a t  very nearly the same as the initial density of the unburned HE. The convergence 
of the CALE calculations as mesh resolution is increased (especially evident near the corners of 
the HE burn wave) to the analytical solution is shown. The largest discrepancy between the 
calculated densities and the analytical solution occurs a t  the le f t  boundary of the problem (piston 
interface). Here the density is decreased (temperature/energy is correspondingly increased) by 
a “wall” effect similar to that seen in the Noh test problems. Although the A x  extent of the 
boundary interaction appears to diminish with increasing mesh resolution, the magnitude of the 
disturbance remains constant. 

Fig. 4 shows the same data as Fig. 3, but with the plot limits zoomed to show details of 
the HE burn region. The density curve produced by the lowest resolution calculation (the 25 
zone or red curve) shows significant deviations from the values of all higher resolutions. The 
calculations also fail to reproduce the density peak located a t  the front of the compression wave. 



Density vs. R ( t  = 7000) 
(multiple resolutions) 
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Density vs. R (t  = 750) 
(multiple resolutions [zoomed]) 
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Figure 3: Density (p) plots from CALE cal- 
culations a t  t = 750 for multiple resolutions 

As the resolution increases, the calculations produce a density spike (which reaches higher values 
than the analytical solution) followed by a f lat region. After this density spike, the calculational 
density remains constant until it intersects the linear decreasing portion of the analytical solution. 
Perhaps this behavior is caused by the necessity of artificially increasing the width of the HE 
detonation front to contain a few zones. The convergence of the calculational values of density 
to that of the analytical solution is most easily seen near the density peak and a t  the tai l  of 
the detonation wave. At other locations, all of the calculational curves more closely match the 
analytical solution. The lower resolution (50 - 200 zone calculations colored from red to green) 
density curves present an “accordion” like folding in density space. However, these artifacts decay 
as the resolution increases. 

Curves of density vs. x from the CALE code for resolutions of 25, 50, 100, 200, 400, 800, 
1600, 3200 and 6400 zones are shown on Fig. 5 taken a t  time t = 2000. The HE detonation 
has completed the burn of all available HE (initially 10 cm in length). The head (or right side) 
of the density curves show the expansion of the HE products into vacuum as a linear region 
which approaches a 0 density value a t  about X = 17cm. There is a discontinuity in the slope 
of the density curves located a t  about x = 10.5cm. Once the HE detonation reaches the end of 
the HE, a rarefaction wave is launched. The rarefaction region begins a t  the slope discontinuity 
and continues until the density reaches than of the burned HE (sti l l  nearly identical to that of 
the original HE density). The piston has moved in about 1 cm by this time. The convergence 
of the CALE calculations as the resolution is increased (especially evident near regions close to 
the slope discontinuities) to the analytical solution is shown. The largest discrepancy between 
the calculated densities and the analytical solution remains a t  the left boundary of the problem 
(the piston interface). However, there is also a slight discrepancy in the behavior of the HE 
products vacuum expansion region shown by the higher resolution (32000-64000 zone blue curves) 
calculations. 

Figure 4: Density (p) plots from CALE cal- 
culations a t  t = 750 for multiple resolutions 
[zoomed] 



Density vs. R ( t  = 2000) 
(multiple resolutions) 
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Density vs. R ( t  = 2000) 
(multiple resolutions [zoomed]) 
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Figure 5: Density (p) plots from CALE cal- 
culations a t  t = 2000 for multiple resolutions 
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Figure 6: Density (p) plots from CALE cal- 
culations a t  t = 2000 for multiple resolutions 
[zoomed] 

Fig. 6 shows the same data as Fig. 5, but with the plot limits zoomed to show details of the 
lef t  side of the problem. The convergence of the calculations as mesh resolution is increased is  
most evident near the two ends of the flat area representing burned, but not yet expanded HE. 
Beginning just ahead of the piston, especially evident in the lower resolution (25 and 50 zone 
red curves) calculations, is a a region where the density curves exhibit noise. As the resolution 
increases, both the width of the boundary interaction region and the amplitude of the noise is 
reduced. 

Curves of density vs. x calculated by the CALE code for resolutions of 25, 50, 100, 200, 400, 
800, 1600, 3200 and 6400 zones are shown on Fig. 7 taken a t  the final time t = 7000. The largest 
discrepancy between the calculated densities and the analytical solution continues to occur a t  
the le f t  boundary of the problem (piston interface). The density values for the lower resolutions 
(especially the 25 and 50 zone A and B or red curves) tend to have the largest difference from 
the analytic density values near the two slope discontinuities (x M 6 and x M 10) and a t  the 
piston interface. As the resolution increases, the values of the density appear to be converging 
towards the analytical solution everywhere except a t  the piston interface. 

Fig. 8 shows the same data as Fig. 7, but with the plot limits zoomed to show details of the 
left region the calculation. Even a t  the final time, the Ax extent of the boundary interaction 
region appears to diminish with increasing resolution, but the magnitude of the disturbance 
remains constant. The noise in the density values, first seen on the t = 2000 plots, is sti l l  
present, with the largest noise values occurring near the left boundary of the problem. There is 
now an observable difference (about 0.3%) between the density that the CALE calculations are 
converging to and the analytic value. 

The choice of y = 3.0 and the velocity of the piston combine to give this problem a simple, 
linear set of characteristics. These choices allow the analytic solution to be easily calculated. 



Density vs. R (t  = 7000) 
(multiple resolutions) 
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Density vs. R (t  = 7000) 
(multiple resolutions [zoomed]) 
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Figure 7: Density (p) plots from CALE cal- 
culations a t  t = 7000 for multiple resolutions 

Figure 8: Density (p) plots from CALE cal- 
culations a t  t = 7000 for multiple resolutions 
[zoomed] 

With the exception of the initial rise in density caused by the HE detonation wave - the density 
of each zone either remains constant or decreases. Since this problem creates no compressions 
(except a t  the detonation front which is handled separately), CALE's standard, shock capturing, 
artificial viscosity (Q) should never be needed. Should the artificial viscosity be turning on anyway 
this could explain part of the 0.3% difference between the density of the CALE calculations and 
the analytic solution a t  the le f t  edge of the problem. Fig. 9 shows the CALE calculated densities 
a t  the final time t = 7000 using the scalar, monotonic Q, the edge based Von Neumann Q, 
and no Q from 800 zone calculations. The scalar, monotonic Q result (curve A or blue line) is 
identical to  that shown previously on Fig. 8. The Von Neumann Q result (curve B or green line) 
produces values of density greater than the standard case. The linear smoothing coefficient for 
the Von Neumann Q must be set lower than that of the limited monotonic Q, accounting for 
the increased noise level exhibited by the Von Neumann density curve. The no Q results (curve 
C or red line) produces density values slightly less than the standard case, closest to that of 
the analytic solution. However, the noise is large (the displayed curve has been passed through 
a 5 point filter) indicating that the shock capturing Q algorithm is responsible for significant 
smoothing of the density. But, even without any Q, the CALE calculations are st i l l  converging 
to density values higher than that of the analytical solution. 

Curves of pressure vs. x calculated by the CALE code for resolutions of 25, 50, 100, 200, 
400, 800, 1600, 3200 and 6400 zones are shown on Fig. 10 taken a t  the final time t = 7000. 
All sections of the density slice plots (at least for the analytical solution) were linear. The middle 
region of the pressure solution is nonlinear. This is the part of the rarefaction wave which extends 
further than the shock produced by the piston. The CALE pressure plots show many of the same 
features displayed by the density calculated values. The boundary interaction, now visible as an 
increase in pressure, is the only area where the calculation appears not to be converging to the 
analytical solution. 
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Density vs. R ( t  = 7000) 
(Scalar Monotonic Vs. Von Neumann 0 ' s )  

~ 

p 0.540 

E 1  I 

0.545 

0.535 

Pressure vs. R (t = 7000) 
(multiple resolutions) 

5.00e-07 

4.00e-07 

3.00e-07 
P 
2.00e-07 

1.00e-07 

0.00e+00 

0.00 5.00 10.00 15.00 20.00 25.00 0.00 20.00 40.00 60.00 

X 
A Scalar Monotonic Q (blue) 
B Vector Von Neumann Q (green) 
C No Q (red) 
D Analytic Aolution (black) 

X 

1600,3200 & 6400 zones] 
A - I pressure [25,50,100,200, 

J pressure [analytic solution] 

Figure 10: Density (p) plots from CALE cal- 

,800, 

Figure 9: Density ( p )  plots from CALE cal- 
culations a t  t = 7000 for multiple Q's 

The analytical solution of the velocities evaluated a t  the final time t = 7000, shows three 
linear areas of increasing velocity as the x coordinate increases. The CALE calculated velocities 
(not shown) very nearly overlay the analytical velocities a t  all resolutions. 

The relative convergence rate (not shown) is obtained by applying Richardson extrapolation 
for three resolutions on a point by point basis. The result is noisy and requires smoothing and is a t  
times difficult to interpret. The extrapolation process is valid only when the numerical algorithms 
are converging a t  the asymptotic limit. For the Heprod problem, averaging the Richardson extrap- 
olation curves for CALE resolutions of 1600, 3200, and 6400 zones over the range 5 < x < 55, 
yields a measured average value of the relative convergence rate of 1.08 for these calculations. 
This is quite close to the lSt order convergence rate expected for this problem. 

The absolute convergence rate measures how quickly the numerical calculations approach the 
analytic solution. We use a linear el measurement of the error. Fig. 11 shows a plot of the log 
of the el error vs. the log of the initial A x  (the mesh begins with a uniform A x  zoning) for 
the CALE calculations of the Escape of HE Products Test Problem. The absolute convergence 
rate is the slope of these curves. Any two resolutions provide an estimate of the convergence 
rate. At  least three resolutions are required to determine if the calculations are in the asymptotic 
convergence range. A linear fit over the entire range of the 1-D calculations (B or blue curve) 
results in a convergence rate measurement of 0.325, much less than 1.0. The slope determined 
by the three lowest resolution points (25, 50 and 100 zones) is 0.797, much closer to the expected 
value of 1.0. Since the CALE calculations are converging to a result that is different than the 
analytical solution, the slope of the el error curve decreases monotonically as the resolution is 
increased. The slope shown by the two highest resolution 1-D points (3200 and 6400 zones) 
is only 0.067. The el error is expected to remain about constant as the resolution is increased 
beyond the existing 6400 zone calculation. This behavior suggests that as resolutions exceed 100 
zones, the e, procedure is more sensitive to differences in the numerical and analytic solutions 

culations a t  t = 7000 for multiple mesh res- 
olutions 
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Figure 11: Absolute el order of convergence for CALE 1-D Heprod calcu- 
lations 

than to the convergence of the numerical solutions. Even though the CALE calculations produce 
density values that are converging as the mesh resolution is increased, in the limit of small Ax, 
CALE will not exactly (0.3% error) reproduce the analytic solution. 
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5 Conclusions and Action Items for the Heprod Problem 

A formal analysis of the error behavior, as defined by the el norm of the difference between the 
analytic and numerical densities, has been completed for the CALE code. These calculations 
were made using a HE stick only 1 zone wide to represent 1-D behavior from the 2-D CALE 
implementation. CALE “passes” the viewgraph-norm comparisons with the analytic solution. A 
relative error Richardson extrapolation for the three highest resolutions suggests that CALE results 
are converging a t  about the expected lSt order rate. However, formal analysis of calculations using 
multiple resolutions shows CALE produces results which diverge from the analytic solution (0.3% 
error). Although there is some dependence of the calculated errors on the code’s artificial viscosity 
(a), most of the error remains even in the limit of no Q. Like the Noh problem, the boundary 
interaction region near the piston interface is also not eliminated by increasing the resolution of 
the calculation. 

The Heprod problem has uncovered several areas in which more work can help answer some 
of the questions remaining from this analysis. Some of the identified action items are as follows: 

0 Many features of the HE burn model seem to be empirically determined. More analysis of 
many of the options available is warranted. 

0 The C1 density error analysis needs to be extended to include pressures, energies (or tem- 
peratures), and velocities 

0 Other codes (ALE3D) need to be analyzed and the analysis needs to be extended to 2 and 
3-D implementations 

0 This analysis needs to be repeated (automated) periodically to monitor changes as simula- 
tion codes evolve 

The formal analysis of the error behavior of codes, as the resolution is increased, measures 
effects a t  levels easily missed by earlier comparisons to the analytic curves a t  one or two resolutions. 
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